On the Stability of Galerkin Methods for Initial-Boundary Value Problems

نویسنده

  • Max D. Gunzburger
چکیده

The stability of approximating the solution of mixed initial-boundary value problems for hyperbolic systems by semidiscrete Galerkin methods is studied. It is shown that a particular straightforward Galerkin method yields an unstable approximation, and that this numerical instability is caused by an improper treatment of the boundary. Stable schemes are then presented, one of which differs from the unstable scheme only insofar as the treatment of the boundary is concerned. These stable schemes make use of a particular matrix which symmetrizes the differential system. It is therefore shown that the use of this matrix is crucial to the stability of the computations as well as for obtaining a priori bounds on the energy of the continuous system. This symmetrizing matrix is also related to the diagonalizing matrix for the system of hyperbolic equations and to the Lyapunov matrix for the system of ordinary differential equations resulting from the application of Galerkin's method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

متن کامل

A numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method

In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

Global Stability for Thermal Convection in a Couple Stress Fluid Saturating a Porous Medium with Temperature-Pressure Dependent Viscosity: Galerkin Method

A global nonlinear stability analysis is performed for a couple-stress fluid layer heated from below saturating a porous medium with temperature-pressure dependent viscosity for different conducting boundary systems. Here, the global nonlinear stability threshold for convection is exactly the same as the linear instability boundary. This optimal result is important because it shows that lineari...

متن کامل

Uniform Stability of Linear Multistep Methods in Galerkin Procedures for Parabolic Problems

Linear multistep methods are considered which have a stability region S and are D-stable on the whole boundary S c S of S. Error estimates are derived which hold uniformly for the class of initial value problems Y’ AY + B(t), t > 0, Y(0) Y with normal matrix A satisfying the spectral condition Sp(AtA) S At O time step, Sp(A) spectrum of A. Because of this property, the result can be applied to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010